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A theory is developed and applied to determine whether an object submerged in an ocean waveguide 
and insonified only by surface-generated noise can be detected with conventional sensing arrays. An 
expression for the total noise-field covariance of a stratified waveguide with a submerged object 
present is derived using full-field wave theory. This is evaluated by numerical wave-number 
integration for a spherical object in a shallow water waveguide. The Cramer-Rao lower bound on 
detection error is computed for several realistic shallow water scenarios at both low and high 
frequency. The results indicate that cross-range localization is possible when the array aperture is 
sufficient to resolve the object scale. This conclusion is supported by beamforming simulations. 
Range localization is possible at greater distances. However, this requires high correlation between 
direct and scattered noise fields at the sensor, which is difficult to replicate via matched field 
processing. In addition, wave theory indicates that high resolution imaging of reflected ambient 
noise is generally most effective within the deep shadow range of the object. Beyond the deep 
shadow range, diffractive interference from the total forward field may overwhelm reflections, 
depending upon the incident noise directional spectrum and measurement range. Overall, present 
analysis indicates that the proposed detection scheme presses the limits of current technology. 

PACS numbers: 43.30.Nb, 43.30.Wi, 43.30.Ft 

INTRODUCTION 

We investigate the possibility of detecting a submerged 
object insonified only by surface noise in an ocean wave- 
guide at ranges which may be much greater than an object 
dimension. We do so by means of stochastic noise modeling, 
wave and scattering theory, as well as detection techniques 
which are widely used in the underwater acoustics commu- 
nity. Our motivation in this effort is twofold. First, we are 
interested in alternative methods for passive detection of un- 
derwater objects. Second, we are interested in the ability of 
submerged vehicles and marine mammals to perceive their 
environment. For example, can dolphins acoustically image 
prey without relying upon their ability to actively insonify a 
target? 

Our problem is expected to have extremely low signal- 
to-noise ratio (SNR) beyond the immediate vicinity of the 
object. This is because the noise field incident on an object is 
of the same order as the direct noise field measured at any 
observation point. However, the scattered noise field is re- 
duced by spreading, scattering and absorption. If the coher- 
ence scale of the noise at the sensor has been augmented by 
the object's presence, localization by coherent processing 
may be possible. In order to separate scattered from direct 
noise, which is assumed to be azimuthally homogeneous, the 
coherence scale may have to extend over an aperture suffi- 
cient to resolve the object. Detection is then highly depen- 
dent upon the SNR, array gain and sidelobe level of the 

sensing device. Since these have no simple geometric rela- 
tionship to object dimension, range and array aperture in a 
waveguide, the best way to judge the practicality of the con- 
cept is via modeling and simulation. 

To our knowledge, the first documented discussion of 
using naturally occurring ambient noise in the ocean as an 
analogy to "daylight" appears in a 1985 article. 1 Here, and 
in a follow-up paper, 2 the possibility of detecting submarines 
solely by their noise absorbing and scattering properties is 
investigated by preliminary approximations. More recent 
experimental, 3 and theoretical, 4 results indicate the possibil- 
ity of detecting a submerged object using high frequency 
ambient noise. Extremely short range detections, within 10 
m of a 3-m object, were made in the high frequency range of 
5 to 45 kHz near a beach with a large pier. The experiment 
used a parabolic reflector directed at a rectangular object. 
Directional variations were not reported, but only the differ- 
ence in ambient noise level for differing orientations of the 
object, reflector and beach. In the present paper, we find 
support for these high frequency experimental results and 
explore the possibility of detection at much longer ranges 
and lower frequencies with full-field modeling in a realistic 
shallow water environment. 

Our theoretical formulation is exact for arbitrary range 
and frequency given the exact scattering function for the spe- 
cific object and environment. In order to make the problem 
more tractable for practical considerations we have adopted a 
single simplifying approximation. We use the free-space 
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scattering function of the object. 5 This ignores contributions 
from multiple scattering and is valid for objects not too close 
to surface and bottom boundaries. This approximation does 
not significantly affect the accuracy nor limit the range or 
frequency domain of interest for most ocean acoustic appli- 
cations. 

We adopt a fully stochastic approach in our theoretical 
formulation, following the noise modelling of Ref. 6. This 
avoids biases and inaccuracies associated with the alternative 

approach of using statistical realizations to represent the 
noise sources. The stochastic approach is also convenient 
since the spatial covariance of the total noise field on the 
sensing array is the quantity directly required for detection. 
Specifically, an object is placed in the correlated noise field 
of a three-dimensional ocean waveguide. 7 The noise field is 
generated by a continuous sheet of stochastic sources below 
the free surface which extend uniformly in range and azi- 
muth from the object. The azimuthal directionality of the 
noise field is therefore homogeneous. (Preliminary results 
indicate that azimuthally inhomogeneous noise, in the pres- 
ence of a coastline with surf, for example, may be far more 
advantageous to detection. 8 However, we reserve more thor- 
ough analysis of this for a future article.) 

We accommodate sources near the object in Sec. I by 
modifying a previously developed theory for scattering from 
an object in a stratified waveguide. s The former theory is in 
terms of normal modes and is therefore more appropriate for 
large range separations between noise source and scatterer. 
While contributions from nearby surface sources can be in- 
corporated by artificially extending the basement layer to 
approximate continuum modes, we model them precisely 
with an alternative approach. We develop a spectral represen- 
tation for the scattered field using the methodology of Ref. 5. 
In Sec. II, we then integrate the scattered and direct field 
contributions from the ensemble of stochastic surface 

sources. This leads to an expression for the spatial covari- 
ance of the total noise field in terms of multidimensional 

wave number integrals for an arbitrary object. These inte- 
grals are decomposed into the sum of the scattered, direct 
and respective cross covariance contributions to the total 
noise field. In Sec. III, we introduce the free-space scattering 
function of a spherical object. Spherical symmetry enables us 
to reduce these covariance terms to the sum and product of 
separate one-dimensional wave number integrals. These ex- 
pressions are then evaluated by numerical integration for 
some illustrative examples using a typical shallow water 
waveguide. The spatial characteristics and coherence struc- 
ture of the noise is then investigated. 

In Sec. IV, we simulate detection for various ranges and 
frequencies using conventional arrays and signal processing 
techniques. Limitations on detection and imaging imposed 
by diffraction are discussed here and in Appendix C. We then 
compute the theoretical lower bound on object localization 
error for the given arrays using the Cramer-Rao approach. 
This gives the upper bound on performance and provides a 
synoptic guide to some situations in which detection by scat- 
tered surface noise is possible. 
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FIG. 1. The geometry and coordinates of a submerged object in a Pekeris 
waveguide with surface generated noise. All coordinate systems have origin 
at the object center with positive z pointing downward. The waveguide 
depth is h, the depth of the object center is d. The sound speed, density and 
attenuation of the water column and sediment are c•, p•, a• and c2, P2, 
a2, respectively. 

I. FULL-FIELD SCATTERING FROM AN OBJECT IN A 
WAVEGUIDE 

In our generalized stochastic formulation, we model 
sources of surface noise as extending continuously in range 
and azimuth from a submerged object in an ocean environ- 
ment. However, the expressions for the field scattered from 
an object in a waveguide of Ref. 5 are most appropriate for 
large source ranges since they are in terms of normal modes. 
To remedy this, we derive similar expressions in this section 
which are valid for arbitrary source range by reformulating 
the scattered field in terms of wave-number integrals. 

We use the following notation: (xo,Yo,Zo) are the 
source coordinates; (xt ,Yt ,zt) are coordinates on the surface 
of the object; and (x,y,z) are the field coordinates. The ori- 
gin for all of these coordinate systems is at the center of the 
object with positive z pointing downward. Cylindrical (p,O,z) 
and spherical (r,O,c)) coordinates are defined as follows 

Xo=ro sin 0o cos 4•o, xt=rt sin Ot cos 4•t, 

x=r sin 0 cos •, 

yo=ro sin 0o sin •o, yt=rt sin Ot sin •t, 

y=r sin 0 sin •, 

z o=r 0 cos 00, z t=r t cos Ot, z=r cos 0, 

_ 2+y2 p2=x2+y2 •9 02 : X o 2 '-1- Y O 2' •9t 2 --Xt t ' ' 
The geometry of an object submerged in a waveguide with 
surface generated noise is shown in Fig. 1. For consistency 
with the simulations to follow, the specified geometry is that 
of a shallow water Pekeris waveguide, although the form of 
the solution is later generalized to include water column 
stratification. The geometry of respective spatial and wave- 
number coordinate systems is shown in Fig. 2. 

We express the total field (I)(r) as the sum of the incident 
field (I)/(r) and the scattered field (I)s(r), 
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Spatial Coordinates Wavenumber Coordinates 

FIG. 2. The geometry of spatial and wave-number coordinates. All coordinate systems have origin at the object center. 

(I) (r) = (I)i(r) + (I)s(r), (1) 

and begin with Eq. (37) of Ref. 5 for the scattered field from 
a rigid surface with unspecified shape 

(I)s(r)=- [dPi(rt)+dPs(rt)] •nt G(rlrt)dAt, (2) 
where G(rlrt) is the waveguide Green's function, (I)i(rt) is 
the field incident on the object, and (I)s(rt) is the scattered 
field on the object. 

We then decompose the incident field into plane waves, 

(I)/(rt)-- •--• d2.1•i g(•i ;Zt,ZO) ½-i•i'(pt-pO), (3) 
where g(•i ;Z,Z0) satisfies 

dg 1 
dz 2 +[k(z)2_ •/2]g= -•--• a(Z_Zo), (4) 

and 

Yi = x/[k2(z)_ •/2], for k2(z)• >•/2, 

-- iX/[SO 2 k 2 -- i -- (Z)], for k2(z) < •/2, (5) 
is the vertical wave-number magnitude in the water column, 
and k(z) - w/c• + ia •, where w is the angular frequency, c• 
and a• are the sound speed and attenuation of the water 
column. After boundary conditions appropriate to the wave- 
guide are satisfied (see Fig. 1) the following wave-number- 
depth Green's function solution results for h-d•>zt•>Zo 

g(•i ;zt,zo)=A(zo)eiyizt+B(zo) e-iyizt, (6) 
where 

1 e i yi(Zo + 2d) _ e - i YiZo ) ....... (7a) A (zo) 4,n'i ?,i 1 -RsiRbi ½2to'ih 
and 

--gsigbi½2iyih (½iyizo--½ -iyi(zO+2d)) ...... (7b) B(zø) 4 ,ri ?'i 1 -RsiRbi ½2to'ih ' 
Both factors are in terms of the surface and bottom reflection 

coefficients R si and R bi for the incident field where 

Rsi= - 1, (8a) 

gbi = 
P2Ti/(PlOi)--I 

P2 ?'i/(Pl Oi) q- 1 ' 
(8b) 

The vertical wave-number magnitude in the sediment is 

Oi = •/[k2(z)_ •/2], for k2(z)• •/2, 

= i x/[ so/2- k2( z)], for k2(z) < so/2, (9) 

where k(z)= t_o/c 2 q-ia 2, and c 2 and a 2 are the sound speed 
and attenuation of the sediment. Substituting Eq. (6) back 
into Eq. (3) we have the field incident on the object in terms 
of up and down going plane waves 

1 f d2 •t.pt+ ,ytzt) (I)/(rt) = •-• .l•i[A(zo)e i(- 
+ B (zo)e i(- gi'pt- yizt)]eigi'po ' (10) 

Similarly, we decompose the waveguide Green's function 
into plane waves 

1 • d2 ei•.(p_pt) G(rl r,)-•-g• • g(f;z,z,) (11) 

where 

g( •;zt ,z)- C(z)½ iyzt q- D(z)½ -iyzt, 

=A (Z)½ iyzt + B(z)½ -iyzt, 

and 

for h-d•>z•>zt, 

for zt>z•>-d, (12) 

l ( ei•'(z+2d)--RsRbe2i9'he-i9 'z) C(z)-4'n'i y 1 -RsRbe 2i9'h , (13a) 

D(z) - 
4 ,n'i y ei •,Z_ R sR be2i o, h e- i O,(z + 2d) ) (13b) 

The incident field subscripts are no longer appropriate and 
have been dropped. 

Now both the incident field on the object (I)i(rt) and the 
waveguide Green's function G(rlrt) are expressed in terms of 
up and down going plane waves. Substituting these back into 
Eq. (2) we have 
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1 • d 2 ei•i.po[A i( + Yizt) • .•i (zo)e --.•i'P, 

+ B(zo)e i(- •i'Pt--YiZt)] -1 t- {Ji) s(rt) ) 
ø• ( 1 f d2 ei•.p [ i(-•.pt+yzt) X an--• • • C(z)e 

+D(z)e i(-•'pt-yzt)] dA t. (14) 

To incorporate a plane-wave scattering function, we express 
the wave-number components in terms of their associated 
propagation angles, which may be complex. Once again, the 
origin of these coordinate systems is at the center of the 

object. A geometrical interpretation of the following expres- 
sions has been provided in Fig. 2, 

•ix=k sin 6• i COS •i, •x=k sin a cos/3, 

•iy=k sin tl i sin 13i, •y=k sin a sin/3, 

Ti-k cos 6•i, T = k cos a, 

e:=ex+ey 
For example, •- p+ yz = kr rl(a,15; O, •), where 

r/( a,/3; 0, •b) = cos a cos 0 + sin a sin 0 cos(/3- •b), 
(16) 

is the cosine of the angle between the propagation direction 
(a,/5) and field coordinate direction (0,•b). Substituting these 
into Eq. (14)we have 

(I)s(r) = - • d2.1•i C•.•i.p•[A (Z•)C-ikrtrl• •-ai•l3• .•t•qbt)-•-B(Z•)C-•krtrl(a•l3• .•t•qbt)]-•-•J•)s(rt) 

cgn t • d2.1• ei•'o[C(z)e-ikrtrl(rr-a,13;Ot,•t)+D(z)e-ikrtrl(a,13;Ot,•t)] dAt, (17) 

for h-d•>z•>zt . We can then express the scattered field in 
the waveguide in terms of a plane-wave scattering function 
$( 0, •b; Oi, &i) for the object 

tI)s(r) =• d2• d2•i ei[•i't'o+•'t']F(z,zo;f, fi), 
(18) 

where 

F(z,zo;•,•i ) ={A (z0)C(z)$ ( rr- o:,/5; rr- 6• i 

+A (zo)D(z)$ ( o:,15; rr- Ol i 

+ B (zo)C (z)$( rr- a,15; Ol i ,•i) 

+ B(zo)O(z)S(a,13; Ol i , •i)}, (19) 

for h-d•>z•>zt . For zt>z•>-d, substitute A(z) for C(z) 
and B(z) for D(z) in Eq. (19) above. 

The above expression is the exact solution for the scat- 
tered field if $( 0, •b; Oi, &i) is the scattering function for the 
specific object with mixed boundary conditions in the spe- 
cific waveguide. The expression is generalized to a stratified 
water column by reformulating the local planewave ampli- 
tudes A,B,C,D to include the appropriate object depth de- 
pendence. However, the approximation that the index of re- 
fraction is constant over the object must be valid. 

It is difficult to obtain an exact expression for 
S( 0, •b; Oi, &i). Therefore, we approximate S( 0, •b; Oi, &i) by 
the free-space plane-wave scattering function 9 S( 0, •b; 0 i , &i) 
which is most easily interpreted in the far field where 

½ikr CI)s(r) • '•F/S(O,•;Oi,•i) (20) 

is the scattered field at (0,•b) for an incident plane wave 
propagating in the direction ( Oi, &i). By introducing the free- 
space scattering function, we use the same reasoning as in 
Sec. III of Ref. 5. The scattered field on the surface of the 

object is approximated by the scattered field on the surface 
of the object in free space. This is valid so long as multiple 
reflections between object and waveguide boundaries are not 
important, i.e. if the object is not too close to boundaries. If 
we substitute S(0, •b; Oi, •i) for $(0, •b; Oi, •i) in Eq. (19), 
then the resulting expression is exact, neglecting multiple 
scattering. 

II. SURFACE NOISE FIELD COVARIANCE FOR A 
STRATIFIED OCEAN WAVEGUIDE WITH A 
SUBMERGED OBJECT 

The spatial covariance of the surface-generated noise 
field is derived in this section for a stratified ocean wave- 

guide with a submerged object present. This is done by com- 
bining the wave theory of the previous section with a sto- 
chastic model for the surface sound sources. We use the 

approach of Ref. 6, and represent surface noise sources by a 
continuous sheet of random monopoles at z0 below the 
pressure-release surface. To simplify our derivation, we ex- 
press the total noise field as a sum of two parts. The first part 
ß •v(r) is the noise field measured in the absence of the ob- 
ject, which we refer to as the direct noise field. The second 
part •s(r) is the surface noise scattered from the object in 
the waveguide, which we refer to as the scattered noise field. 
The spatial covariance of the total noise field in the presence 
of the object is then 

C(r,r') = ([•v(r) + •s(r)][•v(r') + •s(r')]*). 
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This can be decomposed into the following terms: 

C(r,r') = C•wv(r, r' ) + C•vs(r, r' ) + Cs•v(r, r' ) 

+Css(r,r'), (22) 

where C•wv(r,r') = (W•v(r)W•v(r')) is the covariance of 
the direct noise field; Css(r, r') - (Ws(r)W• (r')) is the 
covariance of the scattered noise field; and C•vs(r,r') 
= (W•v(r)W•(r')) is the covariance between the direct and 
scattered noise field. Since the total noise field covariance 

must be Hermitian, it follows that 

C•vs(r,r ) * r' ' =Cs• ( ,r). (23) 

We first derive the covariance of the scattered noise field by 
integrating contributions from the infinite sheet of surface 
sources, 

Css(r,r')- f f d2r0 d2r•(Sw(ro)S•*(r•)) 
x 4,•(r, r0) &f (r', r(•), (24) 

where S•o(r0) is the Fourier transform of the noise source 
time dependence at angular frequency to over the time inter- 
val T. Following Ref. 6, we assume that the spatial coher- 
ence of the noise sources depends only upon their separation 
and that they are uncorrelated 

2q 2 
(S'ø(rø)S•*(rt•))- k 2 Ir6-r01 ' (25) 

where q2/T is the source-strength spectral density of the 
monopole sheet. Substituting Eq. (25) and Eq. (18) into Eq. 

! __ 

(24), and changing variables so that P0 R + P0, we can 
eliminate the surface integral in R to obtain 

2q21 
C ss( r,r' ) = 2 ,r -•-} 

X •-• d2.•i d2•; d2• d2• ', 

F(Z,Zo •, •i)F* (z ,Zo, .•i )e ] ; , .•,, t i[•.r-•' .r' 

X f d2p0 ei[•i-• ]'øø. (26) 
Recognizing that 

f d2po ei[•i-•]'Oo--(27r)2(S(•ix--• ' _ , ix) (5( •iy •iy)' 
(27) 

we arrive at a six-dimensional wave-number integral 

2q21 1)2fff Css(r,r')-(2*r) 3 -•-] • d2•i 
Xd2• d2• ' F(z,zo;•,•i ) 

X F* (z',zo ;•', .•i) ei[ •'o- •' 'o' ], (28) 

which cannot be simplified further without knowledge of the 
scattering function of the object and the acoustic properties 
of the waveguide. 

Similarly we obtain the following expression for the co- 
variance between the scattered and direct noise fields' 

Cs•v(r,r,)=(2rr)2( 2q2t 
l ) f f da d2• ' X • • F(Z,Zo;•, ) 

X g* (z' ,Zo;•' )e/[ •'p+ •' 'p'l, (29) 

where C Ns(r,r') is available via Eq. (23). 
Finally, the direct noise field covariance is available 

from Ref. 6, 

q2 t C•wv(r,r' ) = (2 rr) 2 -•-] 

f0 x • df g(f;z,zo)g*(f;z',zo)Jo(flp'-pl). 

(30) 

We note that for receivers at the same depth, the direct noise 
field covariance is real, and is only a function of horizontal 
separation. 

III. SURFACE NOISE FIELD COVARIANCE FOR A 

STRATIFIED OCEAN WAVEGUIDE WITH A 

SUBMERGED SPHERICAL OBJECT 

Using the expressions developed in the previous section, 
and the relevant free-space scattering function, we derive the 
total noise field covariance for a stratified ocean waveguide 
with a submerged spherical object. We choose a sphere prin- 
cipally because spherical symmetry enables the multidimen- 
sional integrals for the scattered noise field to be reduced to 
a combination of one-dimensional wave-number integrals 
which are easily evaluated numerically. In this section we 
present the general solution and some illustrative examples. 
The derivation is outlined in Appendix A. 

A. General solution 

We introduce the following notation, which employs 
standard symbols for Bessel and Legendre functions. One 
dimensional wave-number integrals with subscripts A or B 
are of the form 

IBA(n,l)= •i d•iB(zo) A *(zo)Pn 

(31a) 

3BA(n,l,m) = •i d•iB(zo) A *(zo)P• 

(3lb) 

Integrals with subscripts C or D are of the form 
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ICD(P,Z;n)= • d• C(z)P,• IAg(P',z';n) = •' d•' Jo(•'P') 

+ ••• d• D(z)Pn (32a) XP,• -•- A(zo)g*(z',zo;•'), (33a) 

•cD(P,z;n,m)= • d• C(z)Pn m •)Jm(P•) 
+ • d• O(z)P,'• Jm(P•). 

(32b) 

And integrals with subscripts A or B and g are of the form 

•Ag(P',z' ;n,m)= s c' d•' Jm(•' 

xp•m '•- A(zo)g*(z',zo;•'). 

The covariance of the scattered noise field is then 

(33b) 

Css(r,r' ) = ( 2 rr) 6 2q 2 ] • f(n)f*(l) [IAA(n,I)IcD(P,Z;n)I•D(p',z';I) 
-- 1--0 

, , , , , , ';/)] + IBA (n,I)IDc(P,Z;n)I•D(P ,Z ;l) +IAB(n,I)IcD(P,Z;n)I•c( p ,Z ;l) +Ioi•(n,I)IDc(P,Z;n)IDc( p ,Z 

min(1,n) (n-m)! (l-m)! 
+2 • (n+m)! (l+m)! 

m=l 

cos m(qb qb )[3AA(n,I,m)3CD(P,Z;n m) •* ' ' -- ' , •JcD(P ,Z ;l,m) 

+ 3oA(n,l,m)3Dc(P,z;n m) •* , , , •JDc(P ,z ;l,m) , •JcD(P ,z ;/,m)+ 7A•(n,l,m)TcD(P,z;n m) •* ' 

+ 7B•(n l,m)3Dc(P,z;n rn) •* ' ' ) , , •JDC(P ,Z ;l,m)] , 

and the covariance between the scattered and direct noise field is 

CsN(r,r' ) = ( 2 rr) 4 2q 2 ] 
-F-) ( 1 • f(n) [IAg(P',z';n)ICD(P,z;n)+IBg(P',z';n)IDC(P,z;n)] 

• (n-m)! 
+2 • (n+m)! 

m=l cos m( qb- (•')[•Ag(P',g' ;n)3cD(P,z;n,m)+ •Bg(P',g' ;n)3Dc(P,z;n,rn) ] ), 

(34) 

(35) 

where CNs(r,r') can be obtained by Eq. (23). 
For a rigid sphere we have 

f(n)=i(-1)"(2n+l) 
j;(ka) 

h?)'(ka) 
(36) 

and for a pressure-release or soft sphere 

f(n)=i(-1)t•(2n+l) 
jnka) 

h(•)(ka) 
(37) 

Equations (31)-(35) are for h-d•>z•>zt . For zt>z•>-d, 
substitute A(z) for C(z) and B(z) for D(z) in Eqs. (32a)- 
(32b). 

In Equations (34) and (35), the solutions are expressed 
as a sum of two sets of terms as a result of the addition 

theorem for spherical harmonics. The first set gives the azi- 
muthally omnidirectional component and is comprised of 

sums over zero-order Bessel functions J0 and Legendre poly- 
nomials P,i of degree n. The second set of terms gives the 
azimuthally directional component and is comprised of sum- 
mations of higher order Bessel functions Jm and the associ- 
ated higher-order Legendre polynomials P,'•. The A, B, C 
and D factors scale local plane-wave components of the 
wave number-depth Green's function and include informa- 
tion about waveguide stratification. [The solution to the Pe- 
keris problem is obtained by substituting the respective ex- 
pressions for these given in Eqs. (7) and (13).] These factors 
are weighted by the proper Legendre polynomial, to give the 
directional characteristics of the scatterer, and are converted 

to field coordinates by a standard Bessel transform of the 
above integrals. The asymptotic form of the spherical Bessel 
and Hankel functions, and their derivatives, may be used in 
Eqs. (36) and (37) for the large and small ka cases respec- 
tively when the order of the function allows this. Assymp- 
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totically large ka can lead to smoother peaks in the wave- 
number spectrum and a more stable numerical integration 
than for a point source at the same frequency. 

The intensities of the scattered noise field, direct noise 
field and total noise field are denoted by Is(r), I/v(r), and 
l(r), respectively. These are obtained by frequency integra- 
tion of the respective covariances C ss(r,r), C/wv(r,r), and 
C(r,r). For example, the bandlimited scattered noise inten- 
sity about center frequency f0 is 

Is(r) •-•) •) f fø+Af/2 = Css(r,r)df. 
.if{)- A f/2 

We adopt the convention that the source-strength spectral 
density is normalized to unity such that 10 10g(q2/T)=O dB 
re:l /.zpa2/(Hz m2). (Notice that /xPa m units are consistent 
with a standard monopole source strength, but in our case are 
also divided by areal units for the continuous sheet.) When 
the covariances are integrated as above over a uniform Af 
= 1-Hz band, 10 10g[pcls(r) ] has sound pressure level (SPL) 
units in dB re:l/xPa. 

B. Illustrative examples 

We present numerical simulations illustrating the inten- 
sity of the scattered, direct, and total noise field as well as the 
azimuthal coherence R ss(p, A cb) which is defined in Appen- 
dix B. These examples give a quantitative description of the 
spatial characteristics of the SNR as a function of range and 
depth from the object and the azimuthal coherence scale of 
the scattered noise field. This information is important in 
designing the sensor aperture and determining the array gain 
necessary for detection. 

All simulations are derived by numerical wave-number 
integration of Eqs. (30), (34), and (35), for the shallow-water 
waveguide shown in Fig. 1. The surface noise sources are 
submerged within a quarter wavelength of the free surface. 
Each source produces the dipole radiation pattern consistent 
with low to mid-frequency field observations. •ø (High- 
frequency field observations are too sparse to be included.) 
For example, at low frequency, the radiation pattern pro- 
duced by this source placement can replicate that of a bubble 
concentration near the free surface which rapidly decays with 
depth. TM This is also the case at higher frequencies for shal- 
low grazing-angle propagation, typical in a shallow wave- 
guide, so long as the bubbles remain acoustically compact. In 
either case, only the absolute level needs to be scaled. •- 
However, the absolute scale is unimportant for our detection 
problem because the scattered noise intensity is proportional 
to the direct noise intensity. 

The noise sources insonify a sphere which is always in 
the center of the waveguide at z=0. The water column and 
sediment parameters are fixed at c•=1500 m/s, p•=1000 
kg/m 3, c2=1700 m/s, p2= 1900 kg/m 3, a2=(0.1/h ) m -•. Low 
and high-frequency examples are presented for soft and rigid 
boundary conditions on the sphere. For the low-frequency 
cases the sources are at z0=0.5-d meters, where h=100 m 
and d--50 m. The sphere's radius is a = 10 m. A water col- 
umn attenuation of a 1=7.0x 10 -8 m -• is used for the f=50 
Hz case where kay2; and a water column attenuation of 

a•=l.4x10 -5 m -• is used for f=300 Hz where karl2.6. 
For the high-frequency f-10 kHz case, the sources are at 
z0=0.01875-d meters; the sphere's radius is reduced to 
a-0.25 m, karl0.5; and the water column attenuation is 
increased to a •=0.0003 m -•. 

We first consider the scattered noise intensities shown in 

Fig. 3 for pressure release boundary conditions on the 
spheres. (The corresponding scattered intensities from rigid 
spheres are not significantly different except for the 50-Hz 
case where the overall levels are slightly lower.) For the 
50-Hz example, modal structure in the waveguide is evident. 
At 300 Hz, waveguide interference is less evident. For the 
10-kHz case, a diffuse beampattern emerges from the object 
with asymmetric directional variations about the horizontal 
related to those of the incident noise field. Here, the rapid 
falloff in intensity with increasing range from the object is 
due to the dramatic decrease in a/h and h/h. As a result, 

waveguide interference is not evident over the short range 
shown. At higher frequency, the combination of higher volu- 
metric absorption in the water column and sediment, as well 
as increased bottom interaction, will significantly reduce the 
scattered intensity at increasing range. This is evident when 
the transmission loss at 1-km range is compared for the 50- 
and 300-Hz cases, where the sphere size remains constant. 
For comparison, we also present the SPL due to monopole 
point sources placed at the center of the waveguide 
r0=(0,0,0), with intensity proportional to G(rlr0)G*(rlr0), in 
Fig. 4. The intensity structure is only similar for the 50-Hz 
case where kay2, and monopolelike behavior is anticipated 
in the scattered field intensity. 

We next consider the azimuthal coherence of the scat- 

tered noise fields Rss(p, Ac)), shown in Fig. 5. Note that for a 
monopole source, the phase fronts will be cylindrically sym- 
metric and Rss(p, Ac))=l. However, this is not the case for 
the scattered noise fields, unless ka <• 1. The azimuthal coher- 

ence has distinct spatial variations which change with fre- 
quency, object size and boundary condition. For the ex- 
amples shown we find that Rss(p, Ac)) falls from near unity at 
azimuthal separations A&•0 to less than half this value at 
A&•h/(2a). This demonstrates that there is an upper bound 
on the azimuthal coherence scale of the scattered noise. This 

bound is apparently the ratio of the only two scales available 
in the scattering, the wavelength of the noise h, and the di- 
ameter of the sphere 2a. For future reference, we define the 
azimuthal correlation scale of the scattered noise as 

ACbc•<h/(2a). The constancy of A•bc over increasing range 
indicates angular spreading. The fact that it is a stationary 
function of azimuthal separation reflects the azimuthal ho- 
mogeneity of the noise. In contrast, the azimuthal coherence 
of a horizontally propagating planewave of wavelength h 
varies with horizontal range p about a point, and is not sta- 
tionary. For example, the coherence peak is only about the 
propagation direction, and it decays to less than half value at 
an angular increment on the order of x/-•/p, when this angle 
is small enough to be approximately equal to its sine. A 
physical interpretation for the azimuthal coherence scale, as 
well as its ramifications upon detection and imaging, is pre- 
sented in Appendix C. 

Finally, we compare the total noise field intensity with 
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FIG. 3. Scattered noise-field intensity for pressure release spheres centered in the waveguide with h = 100 m and d=50 m for the frequencies shown. Ranges 
extend from the sphere's center. Sphere radii are as shown. Sound-pressure level is abbreviated by SPL. 
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FIG. 4. Monopole source-field intensity for the waveguide and frequencies of Fig. 3. The point source is centered at d=50 m for each example. 
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FIG. 5. Azimuthal coherence for a spherical object centered in the waveguide where h = 100 m and d=$O m for the frequencies shown. The coherence is for 
a horizontal plane passing through the center of the object. Both soft and rigid boundary conditions are shown. Ranges extend from the sphere's center. The 
azimuthal correlation scale of the scattered noise is limited to within X/(2a). 

and without the object present, as is shown in Fig. 6. The 
total noise field intensity includes the cross terms between 
the scattered and direct noise field, see Eq. (35). These terms 
are important since they can be on the order of the scattered 
field intensity, see Eq. (34), and significantly alter the struc- 
ture of the total field near the object. For k/h and a/h ap- 
proaching unity, the single scatter approximation is not valid 
at very short ranges. This is evident in Fig. 6 where the field 
total does not uniformly vanish on the a = 10-m pressure re- 

lease spheres at 50 and 300 Hz. For h/h and a/h small, the 
single scatter approximation is a good one at very short 
ranges. This is evident in Fig. 7 where the total field does 
uniformly vanish on the a =0.25-m pressure release sphere at 
10 kHz. (Situations in which the cross terms may be signifi- 
cantly diminished are discussed in Appendix D.) For the 
higher ka cases of f=300 Hz and f=10 kHz, omnidirec- 
tional detection by scattered noise seems to be limited to 
within the deep shadow range of the object. This range is 
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FIG. 6. Total noise-field intensity with and without a spherical object present in the waveguide for h = 100 m, d=$O m. Both 50 and 300 Hz low frequency 
cases are shown for soft and rigid boundary conditions on the a = 10-m radius sphere. The sphere is displayed by a black semicircle with white perimeter. 
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FIG. 7. Total noise-field intensity with and without a spherical object present in the waveguide for high frequency f= 10 kHz, h = 100 m, d=50 m. Both soft 
and rigid boundary conditions on the a =0.25-m radius sphere are investigated. The sphere is displayed by a black semicircle with white perimeter. 

defined in Appendix C for free space conditions. (For the 
above frequencies this range translates to roughly 18 and 
0.43 m, respectively.) For the lower ka and higher h/h (50 
Hz) case, a shadow range is not well defined. Here, omnidi- 
rectional detection is evidentially plausible within a water 
depth in range. 

IV. DETECTION 

The simulations of the previous section and the analysis 
of Appendix C indicate that: 

(1) Object detection solely by exploitation of scattered 
surface noise presses the limits of current technology. This is 
primarily because the SNR is typically near 0 dB in the 
vicinity of the object and falls off rapidly with increasing 
range and frequency. 

(2) In directions where the incident noise spectrum 
peaks, and/•a>l, forward scattering can dominate the scat- 
tered noise field. When this occurs, an angular coherence 
scale of roughly h/(2a) about the object is measured, corre- 
sponding to the angular width of the forward scatter peak for 
a single incident plane wave. Under these conditions, in- 
creasing the aperture of a coherent array beyond this coher- 
ence scale will not increase the array gain or significantly 
enhance detection in a measurement of the scattered field; 
and cross-range resolution will be limited to the scale of the 
object. The noise directional spectra for the shallow water 
situations presented peak near the horizontal. This causes the 
angular coherence scale just described to occur in the azi- 
muthal plane about the object. The azimuthal homogeneity 
of the noise insures that the coherence scale is stationary in 
azimuth. 

(3) High resolution imaging of reflected ambient noise is 
most effective within the deep shadow range of the object 
a(l•a/2) •/3 defined in Appendix C. Beyond this range dif- 
fractive interference from the total forward field may over- 
whelm reflections, depending upon the incident noise direc- 
tional spectrum and measurement range. (Increasing object 
size has a proportionally much greater effect in extending the 
shadow range than increasing frequency.) 

(4) The standard monopole point source field does not 
provide a good replica for matched field processing, even for 
a spherical object, unless ka<•l. Therefore, we avoid 

matched field processing in this initial investigation. (More 
sophisticated detection techniques are discussed in the con- 
cluding section.) 

Instead we provide some examples of detection and im- 
aging of the object by plane-wave beamforming in Sec. 
IV A. This is for the array specified below and the frequen- 
cies previously considered. In Sec. IV B, we address the 
more general localization issue by presenting the Cramer- 
Rao bound on resolution of the object in range, cross range, 
and depth. We use a soft sphere in all cases only because the 
corresponding detection thresholds are slightly larger. 

For our sensor, we use a simple upright billboard array 
with N = 7 x 7 hydrophones at •/2 spacing and length L - ( 
-1)•/2. The angular resolution is therefore fixed for all 
examples. The geometry of the array with respect to the ob- 
ject is shown in Fig. 8. The beampattern of the array is 
shown in Fig. 9. A billboard array has obvious advantages in 
its ability to reject unwanted noise in three dimensions as 
well as its ability to maintain relatively large array gain and 
still fit into a shallow waveguide at low frequency. 

A. Coherent imaging 

For detection, we use both the standard Bartlett proces- 
sor 

P Bart(a) - A* ( a )C( a0)A( a ), (38) 

object 

YA 

array 
7X7 

z A 

x A 

FIG. 8. Detection geometry of the object and sensor are shown. The sensor 
is a 7x7 element upright billboard array. Individual hydrophones are at hi2 
spacing. The broadside axis of the array YA is in the same vertical plane as 
the sphere's center for all examples in this paper. 
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FIG. 9. The normalized beampattern of the billboard array described in Fig. 
8 steered to broadside, in the horizontal and vertical. The Rayleigh resolu- 
tion is ML = 19 ø. The main lobe occupies twice this angular width. The lobe 
structure is that for a rectangular taper. Note that the vertical endfire direc- 
tions are projected onto a line rather than a point due to the coordinate 
system chosen (azimuth versus elevation angle). The dB reference units are 
normalized pressure2/steradian. 

and the minimum variance distortionless processor (MVDP) 
processor, also known as the maximum likelihood method 
(MLM), 13'14 

PMVDp(a) = {A* (a)C- l(a0)A(a) }- 1. (39) 

The normalized replica vector A(a) contains the synthetic 
measurements A j(a) for each sensor rj. These are evaluated 
at the search coordinate a. The normalized covariance matrix 

of the total noise field 

c(% 
- (40) C(a0) ' 

is measured at sensors ri and r k with elements C(rj ,rk) from 
Eq (22). The object is at coordinates a 0. For example in 
plane-wave beamforming, we have 

1 

A/(a)=• exp{- ik-(r/- rref) }, (41) 
where rre f is the location of a reference sensor on the array. 
Sinc• the object is sometimes within the Fresnel zone of the 
array, see Appendix C, we consider azimuthally focused 
plane-wave beamforming. In terms of the array coordinates 
in Fig. 8, the replica field focused at broadside and range PA 
is 

1 

Aj( OA ,•bA)----• exp -ik ZAj COS 0 A 

X 2 
+ sin 0 A COS (•A---- XAi 2pA (42) 

This includes a quadratic correction term in the phase. For 
measurement ranges PA <L/2[L/(2k)] 1/3, higher-order cor- 

rections to the phase are necessary otherwise the beamformer 
output will be nearly identical to that of an unfocused array. 
Whereas, in matched field processing with a point source, the 
replica field is 

G(%la) 
Aj(a) = . (43) 

G(r, la)G*(r, la) 1 

We consider the 50-Hz case first where the vertical ap- 
erture of the array nearly spans the full water column; ex- 
amples are shown in Fig. 10. We begin with the directional- 
ity of the noise as determined by the MVDP beamformer. 
Considering the vertical directionality, two familiar peaks ap- 
pear about horizontal broadside (•A: 7r/2) -14 These are asso- 
ciated with the discrete wavenumber component of the noise 
field. Steeper angle contributions from direct noise sources 
above the array and bottom reflections are artificially in- 
creased by broadening at endfire in this untapered array. (The 
coordinate system of the beamformer maps a single direction 
to a horizontal line in the rectangular directionality plots for 
both up and down vertical endfire.) 

The directionality of the total noise field in the presence 
of the spherical object at 100-m range also appears in Fig. 
10. The MVDP beamformer is used because it significantly 
outperforms performs the Bartlett processor in these ex- 
amples. Although the object is in the array's Fresnel zone, 
including quadratic focus with respect to the object's center 
has little effect on the measurement and is not included in the 

example. A noticeable difference in noise directionality oc- 
curs over the azimuth of the object. This is distributed in 
vertical angle due to the waveguide, i.e., the vertical angle of 
the object cannot be localized by plane-wave beamforming 
due to boundary interference. A detection level of roughly 
1.4 dB is found for an object center at 100-m range, and 0.1 
dB at 0.5-km range. Note from the figure caption that detec- 
tion is significantly enhanced by the presence of cross terms 
in the 100-m detection. We consider the object dimension to 
be nominally resolvable by the array when the angle the 
object subtends is greater than or equal to the ML broadside 
(Rayleigh) resolution. While the object dimension is slightly 
under-resolved at 100-m range, the example indicates that 
detection is still plausible. At 0.5-km range, the array's reso- 
lution is too poor to resolve the object which has become 
practically undetectable by beamforming. 

We next consider the 300-Hz case, in Fig. 11, for the 
same object dimension, boundary conditions and ranges 
shown in Fig. 10. This time the frequency-scaled array oc- 
cupies 15 m of the water column, and the object is in the far 
field of the array. Detection thresholds are similar to those in 
the 50-Hz examples. Detection is not significantly enhanced 
by the presence of cross terms. This will be discussed further 
in the next subsection. 

Finally, we consider the 10-kHz case for the reduced 
sphere diameter and much closer ranges, shown in Fig. 12. 
The array length is now 0.45 m, or roughly the diameter of 
the object which is in the array's far field. We find a signifi- 
cant 3.6-dB detection level at 2.0-m range from the object 
center. For this short range, bottom loss is insignificant as is 
waveguide interference. Therefore, the object is localized in 
both range and azimuth by plane-wave beamforming. At 2.0 
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FIG. 10. Directional charactcristics of the total noise field over elevation and azimuth angle are shown. Thcsc are obtained using unfocused, normalized 
MVDP beamforming with the billboard array described in Figs. 8-9. The dB reference units are normalized prcssurc2/stcradian. The upper plots show cases 
with and without the object present. These are for f=5() Hz, h =1()(} m, d=5() m, and the array center in the middle of the waveguide. The object's presence 
is apparent in the beamformer output. In the lower cxamplcs, the beamformer outputs with and without the objcc! arc diffcrcnced in decibels to highlight the 
detection level. At 100-m range from object center, the detection level is roughly 1.4 dB and at 0.5-km range, it is (). I dB. When covariancc terms representing 
the correlation between the direct and scattered noise fields are eliminated, the detection level is reduced to I).2 dB for !(}(}-m range and 0.(}5 dB for 0.5-kin 
range. 
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FIG. 11. Same as Fig. I0 except f=300 Hz. The objcct's presence is not apparent in the beamformer output. The object is in the far field of the array. The 
detection levels are similar to those in the previous, lower frequency, example. When covariance terms representing the correlation between the direct and 
scattered noise fields are eliminated, the detection level is 1.5 dB for 100-m range and 0.13 dB for 0.5-km range. Their effect is less significant than in the 
lower frequency example. 
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FIG. 12. Same as Fig. 10 except f= 10 kHz, and the object size and boundary condition have been altered as indicated in the figure. The object is in the far 
field of the array The object's presence in the beamformed output is apparent at 2.0-m range from object center. The detection levels show a maximum of 
roughly 3.6 dB at 2.0 m, and 0.35 dB at 10.0-m range. When covariance terms representing the correlation between the direct and scattered noise fields are 
eliminated, these levels are unchanged. 
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FIG. 13. Cramer-Rao lower bound on detection error for a sphere in a waveguide with f=50 Hz, h-100 m, d-50 m. The bound is computed with and 
without covariance cross terms included as shown The sphere center is in the same horizontal plane as array broadside. Only object-center ranges of 50-1000 
m and depths of -40 to 40 m with respect to the array center are shown. The array is centered in the middle of the waveguide at z =0. The minimum detection 
error for object range, cross range and depth localization are shown. 
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FIG. 14. Same as Fig. 13 except f=300 Hz. 

m the object dimension is resolvable by the array. However, 
at 10.0-m range, the object dimension is no longer resolvable 
and detection is questionable. The effect of cross terms is 
again far less significant at higher frequency. In general, this 
example is not inconsistent with the high frequency-short 
range experimental results of Ref. 3 discussed in the Intro- 
duction. Further, both the array aperture and broadside reso- 

lution are roughly the same as the respective aperture and 
resolution of a dolphin's receiving sonar at 10 kHz. ]5 Evi- 
dentia!ly, small objects such as prey may be passively detect- 
able by dolphins simply from their scattered noise fields at 
high frequency. 

It is noteworthy that beyond the deep shadow range, the 
10-kllz scattered-field intensity of Fig. 3 can now be easily 
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FIG. 15. Same as Fig. 13 except f= 10 kHz; sphere dimcnsion and boundary conditions are as indicated in the figure; and only object-array ranges of 2.0-30.0 
m and dcpths of -20 to 20 m are shown. 
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interpreted in terms of forward scatter of the incident noise 
directional spectrum shown in Fig. 12. 

B. Cramer-Rao bounds 

We use the Cramer-Rao upper bound on performance to 
determine conditions in which an object may be detected by 
scattered surface noise. The bound gives the optimal resolu- 
tion obtainable for the given sensor, environmental condi- 
tions and parameters to be estimated according to estimation 
and detection theory. •6 We compute the bound on range, 
cross-range and depth resolution of the object for the shallow 
water scenarios presented in previous examples. We begin 
with Eq. (32) of Ref. 14 which describes the lower bound on 
the mean-square estimation error for any unbiased estimator 
as 

E[(• i - ai)2] •> [J - 1]ii, (44a) 

where elements of the Fisher information matrix are given by 

Jij Tr(C-l(a) o9C(a) o9C(a)) = C-•(a) , (44b) 
o9a i o9a j 

and fi is the estimated position, while a is the actual position. 
This expression is valid under the assumption that harmonic 
components of the noise can be characterized by a second 
moment, or Gaussian probability distribution. 

In all of the examples presented, in Figs. 13-15, the 
same hi2 spaced N=7X7 element upright billboard array is 
again placed in the center of the waveguide, and oriented 
with its broadside axis horizontal and in the vertical plane 
passing through the object center. The object is then moved 
within this plane in depth and range from the array. A plot of 
the Cramer-Rao lower bound for these respective object lo- 
cations is then given on object range, cross range, and depth 
estimation error. This is done by numerically computing the 
square root of the mean square estimation error given in Eq. 
(44a), where the covariances are again determined by nu- 
merical wave number integration. To show how correlation 
between the direct and scattered noise field enhances detec- 

tion, a separate plot is given for the root mean-square esti- 
mation error with and without these covariance cross terms 

included. 

Considering the 50-Hz case first, a dramatic reduction in 
minimum detection error is found in range and cross range 
when cross terms can be included. Also, when these bounds 
are related to the previous beamforming examples, it is clear 
that the MVDP beamformer's performance in cross range 
and depth resolution is near optimal. Therefore, seeking a 
better detection method for these parameters would not be 
necessary. Also, it is clear that the object can only be effec- 
tively localized in cross range and depth when the angle it 
subtends is resolvable by the array. This is observed in the 
previous beamforming examples. On the other hand, high 
resolution localization in range is plausible out to 1.0 km. A 
modified MFP technique may meet this bound, as discussed 
in the concluding section. 

At 300 Hz, the bounds are similar to those found in the 
50-Hz case. For example, cross-range localization is most 
effective when the object dimension is resolvable by the ar- 

ray. However, beyond these relatively short ranges, the upper 
bound on cross-range resolution decreases more rapidly for 
the higher frequency case. This is apparently due to the more 
rapid decrease in SNR at higher frequency noted in previous 
sections. For both 50- and 300-Hz cases, when cross terms 
are included, localization in range consistently has the least 
minimum error. This is because the coherent structure of the 

total field is most sensitive to object perturbations in range. 
Finally, we consider the 10-kHz case, which uses a 

sphere of significantly reduced radius. The bounds on cross 
range and depth again indicate that localization is only plau- 
sible when the object dimension is resolvable by the array. 
Cross terms only enhance detection for these two parameters 
when the array is almost directly above and below the object. 
(In this case, the detection is near endfire where front-back 
ambiguity on the array is minimized, but so is resolution.) 
Apparently, for these short-range orientations, perturbations 
in object cross range and depth have as significant an effect 
on the field as perturbations in range. 

V. SUMMARY AND DISCUSSION 

We have investigated the possibility of detecting a sub- 
merged object by exploiting the way it disturbs an ocean 
waveguide's naturally occurring surface-generated noise 
field. Our approach in this paper is to formulate the problem 
in terms of wave and scattering theory using a stochastic 
model for the noise sources. Expressions for the total noise 
field covariance are derived for an arbitrary object in a strati- 
fied ocean waveguide. Specific expressions are derived for a 
spherical object and evaluated numerically for a shallow wa- 
ter Pekeris waveguide. The only simplifying assumption is 
that multiple scattering between the object and the wave- 
guide boundaries can be neglected. Detections are simulated 
using a conventional upright billboard array design, with 
7x7 elements at hi2 spacing. 

We have used the Cramer-Rao upper bound on resolu- 
tion to determine some conditions in which an object may be 
detected by scattered surface noise for several realistic shal- 
low water scenarios. The results indicate that (1) cross-range 
localization is possible when the array aperture is sufficient 
to resolve the object scale. This is supported by minimum- 
variance beamforming simulations. Over ranges great 
enough for bottom interaction to significantly affect trans- 
mission of scattered noise, lower frequency detections may 
be favored due to higher SNR. (2) Range localization is pos- 
sible at greater distances. However, this requires high corre- 
lation between direct and scattered noise fields at the sensor, 

which is difficult to replicate via matched field processing 
which typically neglects correlation between signal and 
noise. (3) A simple monopole source replica is a poor match 
for the scattered field unless ka • 1. A forward scattered wave 

may prove a more useful replica. Since the scattered noise 
field is a stochastic quantity, we believe that matched field 
processing will be of limited value in meeting the Cramer- 
Rao bound. It is possible that a matched covariance proces- 
sor may prove to be more optimal, especially if the replica is 
obtained by full-wave modeling of the total noise covariance, 
as initial results along these lines suggest. •7 
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We have also found that in directions where the incident 

noise spectrum peaks, and ka>l, forward scattering can 
dominate the scattered noise field. When this occurs, an an- 
gular coherence scale of roughly M(2a) is measured about 
the object, corresponding to the angular width of the forward 
scatter peak for a single incident plane wave. Under these 
conditions, increasing the aperture of a coherent array be- 
yond this coherence scale will not increase the array gain or 
significantly enhance detection in a measurement of the scat- 
tered field. These conditions also limit cross-range resolution 
to the scale of the object regardless of sensor aperture. For 
the shallow water scenarios presented here, the noise direc- 
tional spectra peak near the horizontal. This causes the an- 
gular coherence scale just described to occur in the azimuthal 
plane about the object. The azimuthal homogeneity of the 
noise insures that the coherence scale is stationary in azi- 
muth. 

We find that high resolution imaging of reflected ambi- 
ent noise is most effective within the deep shadow range of 
the object a(ka/2)•/3. Here the total forward field will cause 
the least diffractive interference in imaging reflections. Be- 
yond this range, the measurement is most likely to succeed 
from an orientation such that the incident noise directional 

spectrum does not peak into the steering direction of the 
sensor. Otherwise the total forward field may overwhelm re- 
flections. However, maintaining such an orientation is diffi- 
cult for imaging ranges greater than a water depth. This is 
because the directional spectrum of shallow-water noise 
tends to peak about the horizontal. For example, we find that 
including diffraction from the object may substantially alter 
the simulated images of Ref. 18. These were obtained by 
raytrace assuming specular reflection which implies an infi- 
nite deep shadow range. In this reference, imaging is simu- 
lated for a sensor at 20 m from a 1-m radius sphere at 75 
kHz. However, our analysis indicates that deep shadow ends 
at 5 m. A 20-m measurement is in the range of the Poisson 
diffraction cone where the total forward field intensity due to 
an incident plane wave is on the order of the incident field. 
(The specific situation is discussed in more detail in Appen- 
dix C, where it is shown that the total forward field over- 

whelms reflections for incident plane waves of equal incident 
intensity.) Since 75 kHz is near the upper frequency limit of 
propagating noise in the ocean, 3 this result indicates that 
wave theory is generally necessary to properly model acous- 
tic imaging with ambient noise in the ocean. A useful optical 
analogy might be the theory for imaging extended non-self- 
luminous objects with incoherent, coherent and partially co- 
herent light. 19 It is noteworthy that wave interference and 
diffraction caused by the object is an essential element of this 
classic optical theory. 

In summary, the detection scheme proposed in the title 
of this paper presses the limits of current technology for 
azimuthally homogeneous noise. Recent work 8 indicates that 
an azimuthally directional noise field, such as a coastline 
where surf is generated, can provide a natural means of sepa- 
rating direct and scattered noise to increase the detection 
threshold. In this case, it may no longer be necessary to have 
aperture sufficient to resolve the scale of the object. Simple 
but robust methods such as beamforming could be practical 

at relatively long ranges. Detections would also be less sen- 
sitive to environmental fluctuations. 

Finally, we note that the array aperture and resolution of 
our high frequency examples are roughly the same as those 
of a dolphin's sonar, operating in the 10-kHz range. is These 
examples show that a dolphin may be able to detect small 
objects, such as prey, within a few meters range simply by 
the object's disruption of the noise field. The Cramer-Rao 
bound suggests that this is not possible at much greater 
ranges for the given frequency. The dolphin's evolutionary 
adaptation of active insonification is consistent with this re- 
sult. 
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APPENDIX A: DERIVATION OF THE SCATTERED 
NOISE FIELD COVARIANCE FOR A SPHERE IN A 
WAVEGUIDE 

We begin by introducing the plane-wave scatter function 
for a sphere 

S( t•, j•; ct i ,/•i): S( T]( t•, j•; t• i ,/•i)) 

= • f(n)Pn(rl(tr,j3;tri,J3i) ). (AI) 
n = 0 

Rewriting the cosine of the incidence angle in terms of the 
vertical wave number we have 

1 S( t•,j•; t• i ,/•i): S •-• [ ')/')/i -½ •i cos(/•-/•i)] 

• f(n) P. 
n = 0 

')/i 

m=l 

(n-m)! 

(n+m)! P'T 

XP• •)cos m(/3-/3/)], (A2) 
where we have used the addition theorem for spherical har- 
monics. We then rewrite Eq. (28) as 
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-•] • d•i d• d• t •i•t{A(Z,Zo;•,•i)A*(zt,Zo;•t,•i)• ++ 
o 

+/x (Z,Zo; f, f•)F * (z' ,Zo; f' ,f•)E + - + F(z,zo; f, f•)/x * (z',zo; f', f•)E - + 

+ F(z,zo;i, ii)F*(z',zo;i',ii)•--}, (A3) 

where 

and 

A(z,z0; s c, sci) = [A (zo)C(z) + B(zo)D(z)], 

F (z,z0; s c, sci) = [A (zo)D(z) + B(zo)C(z ) ], 

2'TF 

= - dfii dfi dfi' {e i[•'p- •"P'] 
o 

XS(( 1/k2)[ + TTi-I- •i cos(fl- 

XS* ((1/k2)[ '+ T t yi--]- •t •i cos(fi t- 

This last expression can be simplified to the following' 

•++-(2rr)3• • f(n)f*(l) Jo(p•)Pn 
n=0 l=0 [ 

min(n,l) (n-m)! (l-m)! 
+2 • (n+m)• (l+m)• rn=l ' ' 

cos m(&- &i) 

(A4a) 

(Anb) 

(A5) 

To exploit the cylindrical symmetry of the scattered field 
intensity and maintain a real value, the azimuthal coherence 
function must be confined to a horizontal plane. For illustra- 
tive examples in this paper, the plane is taken through the 
middle of the object and waveguide at z 1=0. 

To understand why the azimuthal coherence can be ex- 
pressed by a real function, it is instructive to consider Eqs. 
(34)-(35). The covariance functions C ss(r,r') and C s•v(r,r'), 
respectively are decomposed into an azimuthally omnidirec- 
tional and directional set of terms. This is a consequence of 
the addition theorem for spherical harmonics. Azimuthal 
variations in spatial coherence are determined by the 
cos m(•-•') factor in Eqs. (34)-(35), where rn determines 
the order of the spherical harmonics. Therefore, for observa- 
tions points r=(p,z,48 and r'=(p,z,O') at the same range 
and depth, but differing azimuth, the covariance of the scat- 
tered field Css(qb-qb') is a real number dependent only upon 
the azimuthal separation, as is Cs•v(4•- 4•') + C•vs(4•- 4•'). 

also leads the direct noise field covariance to be a real func- 

tion dependent only upon receiver separation for sensors at 
the same depth. 

XJrn(P n - n 

XJrn(p,•,)p•* * (A6) 

After substitution into Eq. (A3) and some algebraic manipu- 
lation, the various terms can be separated into the sums and 
products of one-dimensional wave number integrals shown 
in Eq. (34). After a similar process the same can be done for 
Eq. (35). 

APPENDIX B' AZIMUTHAL COHERENCE 

The azimuthal coherence can be defined by a real, nor- 
malized, correlation function 

Rss(P; qb, qbl) 

C ss( P,Z l , qb; P,Z l ,•1) 

x/Css(P,Zl ,•1 ;P,Zl , qbl )Css(P,Zl , qb;P,Zl , (•) 
(B1) 

APPENDIX C: ARRAY DESIGN AND IMAGING 
LIMITATIONS IMPOSED BY DIFFRACTION 

We find that diffractive interference will generally im- 
pose limitations on the ability to image an object by reflected 
ambient noise in the ocean, even at the high frequency limit 
suggested in Ref. 3. To demonstrate this, we begin with the 
geometry and coordinates of a planewave incident upon a 
perfectly reflecting sphere in Fig. C1. The incident wave 
propagates in the •bi= 180 ø direction. Various regions about 
the sphere are identified in this adaptation of a diagram from 
Ref. 9. Specular reflection and the limit of geometric rays is 
a good approximation in the lit region beyond the Fraunhofer 
range of the object, see Fig. C2. For shorter ranges, higher 
order corrections become appropriate. 9 An exact expression 
for the incident field in the direction •b i and measured at 
(p,•b) is given by 

V i = eikp cos(•b- •bi) 

= E in( 2n + 1)jn(kP)Pn(cOs((•- (•i))' 
n=0 

(c1) 

The scattered field measured at (p,•b) is given by 
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FIG. C1. The geometry and coordinates of a plane wave incident upon a perfectly reflecting sphere. The wave is incident from the qo=0 direction. Various 
regions about the sphere are identified in this adaptation of a diagram from Ref. 9. 

V s=- • in(2n+ 1)anh(nl)(kp)Pn(cOs(•-•i)), (C2) 
n =0 

where an=j,,(ka)/h?)(ka) for a pressure release sphere of 
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FIG. C2. Graphical interpretation of the Fraunhofer condition. The angle 
D/r subtended by an object or array of length D from a distance p, where 
p>>D. For a point source at p from the center of a broadside array, half the 
aperture must be at least p hx/• to produce a path length difference greater 
than h/4 between p and the range from the source to the end of the array for 
p•k. 

radius a, and the outward going spherical Hankel function is 

used. This is replaced by a} = j}(ka)/h(n•)'(ka) for a rigid 
sphere. 

The amplitude and phase of the free-space scattering 
function S [Eq. (A1)] can be derived from these 
expressions. 9 These are plotted in Fig. C3 for the ka • 10.5 of 
the 10-kHz examples and a soft sphere. The peak of the 
scattering function is in the forward direction. This decays to 
less than half amplitude over an angular increment of 
roughly h/(2a). The angular width of the forward scatter 
peak roughly maintains this scale well into the Fresnel region 
of the object. It is no coincidence that this is also the azi- 
muthal coherence scale of the scattered noise found in the 

waveguide examples of Fig. 5. For example, in directions 
where the incident noise spectrum peaks, and ka > 1, forward 
scattering can dominate the scattered noise field. This leads 
to an angular coherence scale of roughly h/(2a) about the 
object, corresponding to the angular width of the forward 
scatter peak for a single incident plane wave. For the shallow 
water scenarios presented, the noise directional spectra peak 
near the horizontal. This causes the angular coherence scale 
just described to occur in the azimuthal plane about the ob- 
ject. The azimuthal homogeneity of the noise insures that the 
coherence scale is stationary in azimuth. 

In coherent detection, it is desirable to have a coherent 
signal over the aperture of the sensing array. For example, 
given N sensors at separations greater than or equal to the 
horizontal correlation length of the direct noise field h/2, the 
coherent signal is elevated with respect to the noise by the 
array gain 10 log N. Apertures in excess of the signal's co- 
herence length scale are not useful for detection since the 
incoherent part of the signal will be averaged out with the 
noise. Therefore, the azimuthal coherence scale 

Aqbc•<h/(2a) sets an upper limit on the useful horizontal 
aperture for detection by scattered noise at roughly 
Lmax•pAC•c, where p is range from sensor to object. Simi- 
larly, the optimal azimuthal resolution of the object is limited 
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FIG. C3. The magnitude (a) and phase (b) of the free-space plane wave 
scattering function S(0=0 ø, q0; 0/=0 ø, q0i= 180 ø) for ka •10.5 and a pressure 
release sphere. The forward scatter peak is at q0= 180 ø. This peak decays to 
half amplitude over an angular width of roughly k/(2a). The slope of the 
phase is on the order of 2(ka) -• for q0 near 90 ø. 

by the Rayleigh resolution h/Lmax=h/(pAc/bc)=2a/p to oc- 
cupy the angular scale subtended by the object. Under these 
conditions, increasing the aperture of a coherent array be- 
yond this coherence scale will not increase the array gain or 
significantly enhance detection in a measurement of the scat- 
tered field. These conditions also limit resolution to the scale 

of the object regardless of sensor aperture. 
The implication of these results upon imaging may be 

interpreted in terms of diffraction by considering the total 
forward field. Figure C1 also shows that a diffraction cone of 
intensity comparable to that of the incident field will form in 
the total field beyond the deep shadow. Therefore, given a 
receiver beyond the deep shadow range of the object, the 
total field from a plane wave propagating in the forward 
direction to the receiver will dominate the field of a reflected 

planewave because the reflected field suffers spreading loss. 
This is confirmed by the results shown in Fig. C5. Here Eqs. 
(C1)-(C2) are used to compute the field measured on a line 
array for the geometry shown in Fig. C4. Figure C5(a) shows 
the magnitude of the field measured at each sensor. The ex- 
pected Poisson diffraction pattern from the total forward field 
is evident. The peak of the Poisson diffraction cone along the 
•b= 180 ø axis is on the order of the incident field. The re- 
flected fields from normal and back incidence plane waves 
are orders of magnitude lower. However, they do not yet 
follow inverse square spreading. This is found in the Fraun- 
hofer zone of the object where the scattered field intensity in 
the lit region is equal to the incident plane-wave intensity 
divided hy 4(p/a) 2. Figure C5(b) showq the measured direc- 
tional spectra obtained by plane-wave beamforming for the 
same parameters as in Fig. C5(a). The forward field domi- 
nates the reflected arrivals by about 20 dB and shows peaks 
at angles corresponding to the edges of the object where 
diffraction begins. The central overlap corresponds to propa- 
gation along the Poisson cone axis. The reflected arrivals 
have width greater than the h/L =0.9 ø broadside resolution of 
the array because the measurement range is well within the 
Fraunhofer range of the array and object. The direction of the 
central peaks in the two reflected arrivals can be associated 
with specular reflections to the array center. As expected, 
diffractive interference limits resolution to the scale of the 

object. In Fig. C5(c) all parameters are unchanged except the 
array is placed at p=200 m, at roughly the Fraunhofer range 
of the array and object. Diffractive interference from the for- 
ward field is greater than in the previous example. The reso- 
lution of the array is insufficient to distinguish reflected ar- 
rivals, which are truly specular. As expected, the intensity 
ratio between the total forward and specular arrivals is now 
4(p/a) 2. (Note the elevated sidelobe levels well beyond the 
azimuth of the object.) In Fig. C5(d) the array aperture, and 
number of elements, is increased by a factor of 3 to N=387 
and replaced at p--20 m. The main peaks of the measured 
directional spectra show increased width. Increasing the ap- 
erture of the array caused an increase in diverging beams 
received from the object. Here the array is too close to the 
object for a simple quadratic focus to be effective, ie qua- 
dratic focus gives essentially the same result as plane-wave 
beamforming [see Eq. (42)]. This demonstrates that an in- 
creased aperture without proper focus can lead to poorer 
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FIG. C4. Three incident plane waves of unit amplitude in/zPa are scattered from a rigid sphere and received by a line array beyond the deep shadow range 
of the object at p>ma. The array is of length L centered at •p= 180 ø with hi2 spacing. The wavelength of h=0.02 m (75 kHz) and sphere radius a = 1.0 m 
are taken from Ref. 18. 

resolution. (For example, nearsighted people can often see 
clearly through a pin hole.) Since the incident forward field 
in the absence of the object will have measured intensity of 
20 log(N) for a unit plane wave, or 42 dB for the examples 
in Fig. C5(b) and (c), arrivals from the object will appear as 
a silhouette in comparison. (A simple optical example of this 
effect is to hold a pen (a =5x 10 -3 m) at arms length in front 
of a dominant light or window (k=5x10 -7 m). The deep 
shadow ends at roughly ma-0.16 m. Interference from the 
total forward field dominates specular reflections which are 
not visible. When the pen is brought to within 0.16 m details 
of the object due to specular reflections from other sources 
are visible. However, for a much larger 1-m radius object, 
the deep shadow ends at a much greater range of 185 m in 
daylight!) 

Because waveguide noise directional spectra are typi- 
cally confined to two narrow bands about the horizontal (see 
Sec. IV), the total forward scattered field from the object will 
dominate reflections in the far field. This is apparent in an 
incoherent integration of S over azimuth; see Fig. C3. Also, 
as the resolution of the array increases, arrivals from the 
object separate in measured direction until the situation 
shown in Fig. C5(c) occurs. In this limiting case, the total 
forward field from a single incident plane wave is compared 
to the reflected field from a single incident plane wave. Here, 
increasingly large directional variations in incident noise, or 
object reflectivity, are necessary to overcome diffractive in- 
terference at increasing range. Clearly, the measurement ori- 
entation must also favor reflected noise at the receiver. The 

same conclusion can be drawn for an array with a large and 
fixed number of receiving beams subtending the object. 

APPENDIX D' DECORRELATION OF DIRECT AND 
SCATTERED NOISE FIELDS 

We consider two conditions in which the covariance be- 

tween the direct and scattered noise field may vanish. The 
first concerns relative motion between sources, scatterer and 

receiver. The second concerns temporal decorrelation of the 
noise source signal during travel to the receiver from the 
scattered and nonscattered paths. 

In the former, a scattering object may under go random 
motion A r with respect to the sound sources and/or receivers 
during the sensing time window T. In this case the covari- 
ance cross terms Css(r,r')+Css(r,r') may become negligi- 
bly small when relative motion is larger than a wavelength. 
For example, the expectation value of the cross terms 
<CNs(r,r'+Ar)>Ar may vanish. To demonstrate this, in Eq. 
(35) we replace Ico(P',z';n ), Ioc(p',z';n ), 3co(P', 
z';n,m), and Ioc(p',z';n ) by (Ico(p'+Ar,z';n)}ar, 
{IDc(P' + Ar,z';n)}ar, {3DC(P' + Ar,z';n,m))ar, and 
{3co(p' +Ar,z';n,m)}ar, respectively, where we have as- 
sumed the change in azimuthal angle AO' is negligible. 
Then, for example, 

(D1) 

where 

,/2< <Jrn(P• + Ar•)>/Xr • '•-•p• cos p,• + A r ,• 

= (COS(Ar•)>Ar 

X cos 
m7r 

PsC 2 •rp• 

- {sin(ArsC)}•Xr sin P• 2 

At- 

•/ 2 (D2) x •rp•' 
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FIG. C5. Simulated measurements for the detection geometry and parameters shown in Fig. C4. In all examples, the scattered field is computed by the exact 
summation of Eqs. (C1)-(C2): (a) the magnitude of each of the three fields measured on a N=129 element array at p=20 m; (b) the measured directional 
spectrum of the same array as in (a). The reflected arrivals have width greater than the ML =0.9 ø broadside resolution of the array because the measurement 
is well within the Fraunhofer zone of the array and object. (c) The N= 129 element array is roughly at the Fraunhofer range of the array and object at p= 200 
m. Forward scattering interference is greater than the previous example. The resolution of the array is insufficient to distinguish reflected arrivals, which are 
truly specular. (d) The array aperture, and number of elements, is increased by a factor of 3 at p=20 m. The main peaks of the measured reflected spectra show 
increased width. 
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Here we have used the far-field asymptote for the Bessel 
function, and have assumed that p>>Ar. The expectation val- 
ues and therefore the cross terms Cs•v(r,r')+C•vs(r,r') them- 
selves vanish when Ar•>rr/•. Under these circumstances, 
steep angle propagation will dominate the cross terms. Fur- 
thermore, due to higher-order mode stripping, the cross terms 
will be most significant in close proximity to the scattering 
object. However, for the relative motion to have any effect at 
all, even on perfectly horizontal propagation at sO=k, the 
scale of the fluctuations A r must be greater than X/2. There- 
fore, this argument is only of significance in the mid to high 
frequency regime. 

We note that by similar arguments it can be shown that 
(Css(r,r'))zXr does not vanish and is relatively invariant to 
small random object motions regardless of range and propa- 
gation angle. This is due to the presence of squared factors 
such as (cos2[Ar(•--•')])/Xr and (sin2[Ar(•-•')])/Xr in the 
scattered field covariance. 

The covariance cross terms may also be severely dimin- 
ished by temporal decorrelation of the source signal over the 
travel time difference between source-object-receiver and 
source-receiver paths. In general, the direct and scattered 
noise fields will be independent if the acoustic travel time 
between scatterer and receiver is greater than the temporal 
correlation scale of the noise source. Since a typical correla- 
tion time scale for a surface noise source is on the order of 

r= 1 s, 2ø we deduce that covariance cross terms will not be 
negligible for detections within roughly c r/2 =750 m of the 
object. Also, the contribution to covariance cross terms will 
not be negligible from sources where the path length differ- 
ence in source-object-receiver versus source-receiver paths 
is less than c r/2. This condition selects sources in a sector 

extending behind the object from the sensor which is sym- 
metric about the line joining the two. 
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